Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2400584121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502707

RESUMEN

When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/metabolismo , Activación Transcripcional , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , División Celular/genética , Factor sigma/genética , Factor sigma/metabolismo
2.
Cell Rep ; 42(1): 111955, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640333

RESUMEN

Delivery of cancer therapeutics to non-specific sites decreases treatment efficacy while increasing toxicity. In ovarian cancer, overexpression of the cell surface marker HER2, which several therapeutics target, relates to poor prognosis. We recently reported the assembly of biocompatible bacterial spore-like particles, termed "SSHELs." Here, we modify SSHELs with an affibody directed against HER2 and load them with the chemotherapeutic agent doxorubicin. Drug-loaded SSHELs reduce tumor growth and increase survival with lower toxicity in a mouse tumor xenograft model compared with free drug and with liposomal doxorubicin by preferentially accumulating in the tumor mass. Target cells actively internalize and then traffic bound SSHELs to acidic compartments, whereupon the cargo is released to the cytosol in a pH-dependent manner. We propose that SSHELs represent a versatile strategy for targeted drug delivery, especially in cancer settings.


Asunto(s)
Neoplasias , Esporas Bacterianas , Ratones , Humanos , Animales , Esporas Bacterianas/metabolismo , Sistemas de Liberación de Medicamentos , Membrana Celular/metabolismo , Neoplasias/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo
3.
Nat Biotechnol ; 41(9): 1307-1319, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36702897

RESUMEN

The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.


Asunto(s)
Imagenología Tridimensional , Iluminación , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos , Citoesqueleto , Lisosomas
4.
Proc Natl Acad Sci U S A ; 119(10): e2117930119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35239434

RESUMEN

SignificanceWhile most small, regulatory RNAs are thought to be "noncoding," a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete.


Asunto(s)
Carbono/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/fisiología , Medios de Cultivo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Galactosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo
5.
Elife ; 102021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33704064

RESUMEN

Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.


Living organisms need energy to stay alive; in cells, this energy is supplied in the form of a small molecule called adenosine triphosphate, or ATP, a nucleotide that stores energy in the bonds between its three phosphate groups. ATP is present in all living cells and is often referred to as the energy currency of the cell, because it can be easily stored and transported to where it is needed. However, it is unknown why cells rely so heavily on ATP when a highly similar nucleotide called guanosine triphosphate, or GTP, could also act as an energy currency. There are several examples of proteins that originally used GTP and have since evolved to use ATP, but it is not clear why this switch occurred. One suggestion is that ATP is the more readily available nucleotide in the cell. To test this hypothesis, Updegrove, Harke et al. studied a protein that helps bacteria transition into spores, which are hardier and can survive in extreme environments until conditions become favorable for bacteria to grow again. In modern bacteria, this protein uses ATP to provide energy, but it evolved from an ancestral protein that used GTP instead. First, Updegrove, Harke et al. engineered the protein so that it became more similar to the ancestral protein and used GTP instead of ATP. When this was done, the protein gained the ability to break down GTP and release energy from it, but it no longer performed its enzymatic function. This suggests that both the energy released and the source of that energy are important for a protein's activity. Further analysis showed that the modern version of the protein has evolved to briefly hold on to ATP after releasing its energy, which did not happen with GTP in the modified protein. Updegrove, Harke et al. also discovered that the levels of GTP in a bacterial cell fall as it transforms into a spore, while ATP levels remain relatively high. This suggests that ATP may indeed have become the source of energy of choice because it was more available. These findings provide insights into how ATP became the energy currency in cells, and suggest that how ATP is bound by proteins can impact a protein's activity. Additionally, these experiments could help inform the development of drugs targeting proteins that bind nucleotides: it may be essential to consider the entirety of the binding event, and not just the release of energy.


Asunto(s)
Adenosina Trifosfatasas/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Dominio Catalítico , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Polimerizacion , Ingeniería de Proteínas
6.
Proc Natl Acad Sci U S A ; 116(43): 21789-21799, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597735

RESUMEN

Bacterial spores are dormant cells that are encased in a thick protein shell, the "coat," which participates in protecting the organism's DNA from environmental insults. The coat is composed of dozens of proteins that assemble in an orchestrated fashion during sporulation. In Bacillus subtilis, 2 proteins initiate coat assembly: SpoVM, which preferentially binds to micron-scale convex membranes and marks the surface of the developing spore as the site for coat assembly; and SpoIVA, a structural protein recruited by SpoVM that uses ATP hydrolysis to drive its irreversible polymerization around the developing spore. Here, we describe the initiation of coat assembly by SpoVM and SpoIVA. Using single-molecule fluorescence microscopy in vivo in sporulating cells and in vitro on synthetic spores, we report that SpoVM's localization is primarily driven by a lower off-rate on membranes of preferred curvature in the absence of other coat proteins. Recruitment and polymerization of SpoIVA results in the entrapment of SpoVM on the forespore surface. Using experimentally derived reaction parameters, we show that a 2-dimensional ratchet model can describe the interdependent localization dynamics of SpoVM and SpoIVA, wherein SpoVM displays a longer residence time on the forespore surface, which favors recruitment of SpoIVA to that location. Localized SpoIVA polymerization in turn prevents further sampling of other membranes by prelocalized SpoVM molecules. Our model therefore describes the dynamics of structural proteins as they localize and assemble at the correct place and time within a cell to form a supramolecular complex.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes , Microscopía Fluorescente , Esporas Bacterianas/crecimiento & desarrollo
7.
Nucleic Acids Res ; 47(3): 1482-1492, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462307

RESUMEN

Increasing numbers of 3'UTR-derived small, regulatory RNAs (sRNAs) are being discovered in bacteria, most generated by cleavage from longer transcripts. The enzyme required for these cleavages has been reported to be RNase E, the major endoribonuclease in enterica bacteria. Previous studies investigating RNase E have come to a range of different conclusions regarding the determinants for RNase E processing. To better understand the sequence and structure determinants for the precise processing of a 3' UTR-derived sRNA, we examined the cleavage of multiple mutant and chimeric derivatives of the 3' UTR-derived MicL sRNA in vivo and in vitro. Our results revealed that tandem stem-loops 3' to the cleavage site define optimal, correctly-positioned cleavage of MicL and probably other sRNAs. Moreover, our assays of MicL, ArcZ and CpxQ showed that sRNAs exhibit differential sensitivity to RNase E, likely a consequence of a hierarchy of sRNA features recognized by the endonuclease.


Asunto(s)
Endorribonucleasas/química , Escherichia coli/genética , ARN Pequeño no Traducido/genética , Regiones no Traducidas 3'/genética , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Pequeño no Traducido/química
8.
FEMS Microbiol Lett ; 365(18)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30084923

RESUMEN

Spores of Bacillus subtilis are encased in a protein coat composed of ∼80 different proteins. Recently, we reconstituted the basement layer of the coat, composed of two structural proteins (SpoVM and SpoIVA) around spore-sized silica beads encased in a lipid bilayer, to create synthetic spore-like particles termed 'SSHELs'. We demonstrated that SSHELs could display thousands of copies of proteins and small molecules of interest covalently linked to SpoIVA. In this study, we investigated the efficacy of SSHELs in delivering vaccines. We show that intramuscular vaccination of mice with undecorated one micron-diameter SSHELs elicited an antibody response against SpoIVA. We further demonstrate that SSHELs covalently modified with a catalytically inactivated staphylococcal alpha toxin variant (HlaH35L), without an adjuvant, resulted in improved protection against Staphylococcus aureus infection in a bacteremia model as compared to vaccination with the antigen alone. Although vaccination with either HlaH35L or HlaH35L conjugated to SSHELs similarly elicited the production of neutralizing antibodies to Hla, we found that a subset of memory T cells was differentially activated when the antigen was delivered on SSHELs. We propose that the particulate nature of SSHELs elicits a more robust immune response to the vaccine that results in superior protection against subsequent S. aureus infection.


Asunto(s)
Toxinas Bacterianas/inmunología , Portadores de Fármacos/administración & dosificación , Proteínas Hemolisinas/inmunología , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Bacteriemia/prevención & control , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Modelos Animales de Enfermedad , Proteínas Hemolisinas/genética , Inyecciones Intramusculares , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas Estafilocócicas/administración & dosificación , Vacunas Estafilocócicas/genética , Subgrupos de Linfocitos T/inmunología , Resultado del Tratamiento , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
9.
Curr Opin Microbiol ; 36: 7-13, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28110195

RESUMEN

Bacterial cells are highly organized at a molecular level. Understanding how specific proteins localize to their proper subcellular address has been a major challenge in bacterial cell biology. One mechanism, which appears to be increasingly more common, is the use of 'geometric cues' for protein localization. In this model, certain shape-sensing proteins recognize, and preferentially embed into, either negatively or positively curved (concave or convex, respectively) membranes. Here, we review examples of bacterial proteins that reportedly localize by sensing geometric cues and highlight emerging mechanistic understandings of how proteins may recognize subtle differences in membrane curvature.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Bacterias/citología , Proteínas Bacterianas/química , Membrana Celular/química , Unión Proteica , Transporte de Proteínas
10.
Nucleic Acids Res ; 44(14): 6935-48, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27166377

RESUMEN

Here, we report the characterization of a set of small, regulatory RNAs (sRNAs) expressed from an Escherichia coli locus we have denoted sdsN located adjacent to the LuxR-homolog gene sdiA Two longer sRNAs, SdsN137 and SdsN178 are transcribed from two σ(S)-dependent promoters but share the same terminator. Low temperature, rich nitrogen sources and the Crl and NarP transcription factors differentially affect the levels of the SdsN transcripts. Whole genome expression analysis after pulse overexpression of SdsN137 and assays of lacZ fusions revealed that the SdsN137 directly represses the synthesis of the nitroreductase NfsA, which catalyzes the reduction of the nitrogroup (NO2) in nitroaromatic compounds and the flavohemoglobin HmpA, which has aerobic nitric oxide (NO) dioxygenase activity. Consistent with this regulation, SdsN137 confers resistance to nitrofurans. In addition, SdsN137 negatively regulates synthesis of NarP. Interestingly, SdsN178 is defective at regulating the above targets due to unusual binding to the Hfq protein, but cleavage leads to a shorter form, SdsN124, able to repress nfsA and hmpA.


Asunto(s)
Citoprotección/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Compuestos de Nitrógeno/farmacología , ARN Bacteriano/metabolismo , Factor sigma/metabolismo , Transactivadores/metabolismo , Secuencia de Bases , ADN Intergénico/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteína de Factor 1 del Huésped/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Uridina/metabolismo
11.
Curr Opin Microbiol ; 30: 133-138, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26907610

RESUMEN

The RNA chaperone protein Hfq is critical to the function of small, base pairing RNAs in many bacteria. In the past few years, structures and modeling of wild type Hfq and assays of various mutants have documented that the homohexameric Hfq ring can contact RNA at four sites (proximal face, distal face, rim and C-terminal tail) and that different RNAs bind to these sites in various configurations. These studies together with novel in vitro and in vivo experimental approaches are beginning to give mechanistic insights into how Hfq acts to promote small RNA-mRNA pairing and indicate that flexibility is integral to the Hfq role in RNA matchmaking.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/genética , Bacterias/genética , Proteínas Bacterianas/genética , Emparejamiento Base , Proteína de Factor 1 del Huésped/genética , ARN Bacteriano/metabolismo
12.
FEMS Microbiol Rev ; 39(3): 379-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25934120

RESUMEN

The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).


Asunto(s)
Bacterias/genética , Evolución Molecular , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Emparejamiento Base , Selección Genética , Especificidad de la Especie
13.
Mol Cell ; 57(6): 1099-1109, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794618

RESUMEN

The highly structured, cis-encoded RNA elements known as riboswitches modify gene expression upon binding a wide range of molecules. The yybP-ykoY motif was one of the most broadly distributed and numerous bacterial riboswitches for which the cognate ligand was unknown. Using a combination of in vivo reporter and in vitro expression assays, equilibrium dialysis, and northern analysis, we show that the yybP-ykoY motif responds directly to manganese ions in both Escherichia coli and Bacillus subtilis. The identification of the yybP-ykoY motif as a manganese ion sensor suggests that the genes that are preceded by this motif and encode a diverse set of poorly characterized membrane proteins have roles in metal homeostasis.


Asunto(s)
Bacillus subtilis/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Manganeso/metabolismo , Proteínas de Transporte de Membrana/genética , Secuencias Reguladoras de Ácido Ribonucleico , Riboswitch/genética , Regiones no Traducidas 5' , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Manganeso/farmacología , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Bacteriano/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
14.
Genes Dev ; 28(14): 1620-34, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030700

RESUMEN

In enteric bacteria, the transcription factor σ(E) maintains membrane homeostasis by inducing synthesis of proteins involved in membrane repair and two small regulatory RNAs (sRNAs) that down-regulate synthesis of abundant membrane porins. Here, we describe the discovery of a third σ(E)-dependent sRNA, MicL (mRNA-interfering complementary RNA regulator of Lpp), transcribed from a promoter located within the coding sequence of the cutC gene. MicL is synthesized as a 308-nucleotide (nt) primary transcript that is processed to an 80-nt form. Both forms possess features typical of Hfq-binding sRNAs but surprisingly target only a single mRNA, which encodes the outer membrane lipoprotein Lpp, the most abundant protein of the cell. We show that the copper sensitivity phenotype previously ascribed to inactivation of the cutC gene is actually derived from the loss of MicL and elevated Lpp levels. This observation raises the possibility that other phenotypes currently attributed to protein defects are due to deficiencies in unappreciated regulatory RNAs. We also report that σ(E) activity is sensitive to Lpp abundance and that MicL and Lpp comprise a new σ(E) regulatory loop that opposes membrane stress. Together MicA, RybB, and MicL allow σ(E) to repress the synthesis of all abundant outer membrane proteins in response to stress.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , ARN Pequeño no Traducido/metabolismo , Factor sigma/metabolismo , Estrés Fisiológico/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Péptidos y Proteínas de Señalización Intracelular , Lipoproteínas/genética , Fenotipo , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas/fisiología , ARN Pequeño no Traducido/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética
15.
EMBO J ; 31(8): 1961-74, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22388518

RESUMEN

Hfq-binding small RNAs (sRNAs) in bacteria modulate the stability and translational efficiency of target mRNAs through limited base-pairing interactions. While these sRNAs are known to regulate numerous mRNAs as part of stress responses, what distinguishes targets and non-targets among the mRNAs predicted to base pair with Hfq-binding sRNAs is poorly understood. Using the Hfq-binding sRNA Spot 42 of Escherichia coli as a model, we found that predictions using only the three unstructured regions of Spot 42 substantially improved the identification of previously known and novel Spot 42 targets. Furthermore, increasing the extent of base-pairing in single or multiple base-pairing regions improved the strength of regulation, but only for the unstructured regions of Spot 42. We also found that non-targets predicted to base pair with Spot 42 lacked an Hfq-binding site, folded into a secondary structure that occluded the Spot 42 targeting site, or had overlapping Hfq-binding and targeting sites. By modifying these features, we could impart Spot 42 regulation on non-target mRNAs. Our results thus provide valuable insights into the requirements for target selection by sRNAs.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , MicroARNs/metabolismo , Emparejamiento Base , Sitios de Unión , Conformación de Ácido Nucleico , Unión Proteica , Análisis de Secuencia
16.
Biochim Biophys Acta ; 1809(10): 532-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21889623

RESUMEN

The Escherichia coli RNA binding protein Hfq plays an important role in regulating mRNA translation through its interactions with small non-coding RNAs (sRNAs) and specific mRNAs sites. The rpoS mRNA, which codes for a transcription factor, is regulated by several sRNAs. DsrA and RprA enhance translation by pairing to a site on this mRNA, while OxyS represses rpoS mRNA translation. To better understand how Hfq interacts with these sRNAs and rpoS mRNA, the binding of wt Hfq and eleven mutant Hfqs to DsrA, RprA, OxyS and rpoS mRNA was examined. Nine of the mutant Hfq had single-residue mutations located on the proximal, distal, and outer-edge surfaces of the Hfq hexamer, while two Hfq had truncated C-terminal ends. Hfq with outer-edge mutations and truncated C-terminal ends behaved similar to wt Hfq with regard to binding the sRNAs, rpoS mRNA segments, and stimulating DsrA•rpoS mRNA formation. Proximal surface mutations decreased Hfq binding to the three sRNAs and the rpoS mRNA segment containing the translation initiation region. Distal surface mutations lowered Hfq's affinity for the rpoS mRNA segment containing the (ARN)(4) sequence. Strong Hfq binding to both rpoS mRNA segments appears to be needed for maximum enhancement of DsrA•rpoS mRNA annealing. OxyS bound tightly to Hfq but exhibited weak affinity for rpoS mRNA containing the leader region and 75 nt of coding sequence in the absence or presence of Hfq. This together with other results suggest OxyS represses rpoS mRNA translation by sequestering Hfq rather than binding to rpoS mRNA.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Mutación , ARN Bacteriano/genética , ARN Mensajero/genética , Proteínas Represoras/genética , Factor sigma/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína
17.
RNA ; 17(3): 489-500, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21205841

RESUMEN

The Escherichia coli RNA binding protein Hfq is involved in many aspects of post-transcriptional gene expression. Tight binding of Hfq to polyadenylate sequences at the 3' end of mRNAs influences exonucleolytic degradation, while Hfq binding to small noncoding RNAs (sRNA) and their targeted mRNAs facilitate their hybridization which in turn effects translation. Hfq binding to an A-rich tract in the 5' leader region of the rpoS mRNA and to the sRNA DsrA have been shown to be important for DsrA enhanced translation initiation of this mRNA. The complexes of Hfq-A(18) and Hfq-DsrA provide models for understanding how Hfq interacts with these two RNA sequence/structure motifs. Different methods have reported different values for the stoichiometry of Hfq-A(18) and Hfq-DsrA. In this work, mass spectrometry and analytical ultracentrifugation provide direct evidence that the strong binding mode of the Hfq hexamer (Hfq(6)) for A(18) and domain II of DsrA (DsrA(DII)) involve 1:1 complexes. This stoichiometry was also supported by fluorescence anisotropy and a competition gel mobility shift experiment using wild-type and truncated Hfq. More limited studies of Hfq binding to DsrA as well as to the sRNAs RprA, OxyS, and an 18-nt segment of OxyS were also consistent with 1:1 stoichiometry. Mass spectrometry of cross-linked samples of Hfq(6), A(18), and DsrA(DII) exhibit intensity corresponding to a ternary 1:1:1 complex; however, the small intensity of this peak and fluorescence anisotropy experiments did not provide evidence that this ternary complex is stable in solution.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , ARN no Traducido/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Polarización de Fluorescencia , Proteína de Factor 1 del Huésped/genética , Mutación/genética , Unión Proteica , ARN Bacteriano/genética , ARN Pequeño no Traducido , ARN no Traducido/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ultracentrifugación
18.
Biochim Biophys Acta ; 1799(8): 588-96, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20619373

RESUMEN

The RNA-binding protein Hfq has been studied extensively for its function as a modulator of gene expression at the post-transcriptional level. While most Hfq studies have focused on the protein's interaction with sRNAs and mRNAs, Hfq binding to DNA has been observed but is less explored. During the isolation of Hfq from Escherichiacoli, we found genomic DNA fragments associated with the protein after multiple steps of purification. Sequences of 41 amplified segments from the DNA fragments associated with Hfq were determined. A large fraction of the DNA segments were predicted to have significant helical axis curvature and were from genes associated with membrane proteins, characteristics unexpected for non-specific binding. Analysis by analytical ultracentrifugation indicated that rA(18) binding to Hfq disrupts Hfq-DNA interactions. The latter observation suggests Hfq binding to DNA involves its distal surface. This was supported by a gel mobility shift assay that showed single amino acid mutations on the distal surface of Hfq inhibited Hfq binding to duplex DNA, while six of seven mutations on the proximal surface and outer circumference of the hexamer did not prevent Hfq binding. Two mutated Hfq which have portions of their C-terminal domain removed also failed to bind to DNA. The apparent K(d) for binding wild type Hfq to several duplex DNA was estimated from a gel mobility shift assay to be ~400nM.


Asunto(s)
ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteína de Factor 1 del Huésped/química , Modelos Moleculares , Mutación/genética , Conformación Proteica , Estructura Terciaria de Proteína , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...